

AFRL-IF-RS-TR-2003-287
Final Technical Report
December 2003

SYSTEMS ASSURANCE

Syracuse University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-287 has been reviewed and is approved for publication

APPROVED: /s/
 W. JOHN MAXEY
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, Jr., Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Dec 03

3. REPORT TYPE AND DATES COVERED
Final Jul 00 – Sep 01

4. TITLE AND SUBTITLE

SYSTEMS ASSURANCE

6. AUTHOR(S)

Steve J. Chapin

5. FUNDING NUMBERS
C - F30602-01-1-0508
PE - 62301E
PR - OIPG
TA - 32
WU - P5

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Systems Assurance Institute
Syracuse University
Syracuse NY 13219

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Rd
Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-287

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: W. John Maxey, IFGB, 315-330-3617, maxeyw@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The Systems Assurance contract supported fundamental security and assurance research at the Center for Systems
Assurance at Syracuse University. This research included intrusion detection mechanisms, software resilience, and
steganography. The intrusion detection focused on packet filtering and intrusion sensing using programmable (smart)
network interfaces, and buffer overflow detection and prevention. The Computational Resiliency project focused on
novel applications of replication, migration, agreement protocols, and group communication to increase the assurance
of scientific applications. The Protocol Steganography project defined a new model of information hiding in network
flows. The project resulted in four software prototypes and a total of five refereed publications.

15. NUMBER OF PAGES
33

14. SUBJECT TERMS

information warfare, quality of service, anomaly detection 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Contents

1 Introduction 1

2 Semantics-Preserving Application-Layer Protocol
Steganography 1
2.1 Framework for Secret Communication 3

2.1.1 Adversary Models . 5
2.2 Related Work . 6
2.3 A Case Study: SSH . 7

2.3.1 SSH Potential for Information Hiding 9
2.3.2 Prototype Implementation 11
2.3.3 Discussion . 12

2.4 Future Work . 13
2.5 Conclusion . 14

3 Interface-Based Intrusion Detection 15
3.1 Design Goals . 15
3.2 Software Architecture Overview . 16
3.3 Software Components . 16

3.3.1 VSNIC (Virtual Smart Network Interface Card) 17
3.4 Conclusion and Future Enhancements 22

4 Computational Resiliency 23

5 Conclusion 26

i

1 Introduction

The Systems Assurance contract supported research into three major areas at the Cen-
ter for Systems Assurance at Syracuse University: Protocol Steganography, Intrusion
Detection and Prevention, and Computational Resiliency. Protocol Steganography is
described in section 2. The intrusion detection and prevention sub-project had two por-
tions: smart network interfaces and buffer overflow prevention. The smart NIC project
produced a software prototype implemented as a kernel module under Linux, and is
described in section 3; the buffer overflow portion is described in the attached papers.
The Computational Resiliency project is described in 4 and in the attached papers.

2 Semantics-Preserving Application-Layer Protocol
Steganography

Protocol steganography allows users who wish to communicate secretly to embed mes-
sages within other messages. These secret messages can be used for anonymous com-
munication for purposes ranging from entertainment to protected business communi-
cation or national defense.

In this section, we describe our approach to application-layer protocol steganogra-
phy, and describe how we can embed messages into commonly used TCP/IP protocols
such as SSH and HTTP. We also introduce the notion of semantics preservation, which
ensures that messages still conform to the host protocol, even after embedding. Strong
semantics preservation ensures that the meaning of the message is unchanged, while
weak semantics preservation only guarantees the less stringent condition that the mes-
sage be semantically valid.

To demonstrate the efficacy of our approach, we have implemented protocol steganog-
raphy within the Secure Shell (SSH) protocol.

Steganography, from the Greek “covered writing”, refers to the practice of hiding
information within other information [13]. Historically, notions of classical steganog-
raphy can be found even centuries before Christ. In recent years, steganography has
become digital: the favorite media for information hiding are images, music scores, for-
matted and written text, digital sounds, and videos. This evolution of steganographic
techniques has received particular attention, as have the security and robustness of such
methods [1, 3, 16, 18, 19]. Traditionally, most steganographic systems relied on the se-
crecy of the encoding system [21]. At present, the security of a stegosystem depends
on how well it conceals the existence of a hidden message and in the secrecy of a key,
if used, for embedding the message. Protocol steganography is the art of embedding
information within messages and network control protocols used by common applica-
tions [6].

An important consideration in the embedding process is whether it is semantics-
preserving, i.e., whether the resulting message still conforms to the protocol specifica-
tion. That property guarantees that if the message is interpreted at any point during its
transmission, it will produce meaningul results. In addition to that, semantic preserva-
tion in modified messages helps to make them indistinguishable from unmodified cover
messages. Using protocol steganography, we can embed information in overt channels,

1

in contrast to the use of covert channels, which allow signaling mechanisms to occur
where no explicit communication path exists. Advantages of protocol steganography
include achieving greater bandwidth in hidden communication as well as taking advan-
tage of the most widely-used network protocols.

We define two levels of semantics preservation, both of which imply that the stego-
message is a correct message within the protocol. Weak semantics preservation means
that the stego-message, while legal, has a different meaning than the original cover
message. Strong semantics preservation means that the stego-message has the same
meaning as the original cover.

Figure 1: TCP/IP Protocol Suite Layers.

Networking protocols are divided into multiple layers, as shown in Figure 1. The
physical layer is responsible for communicating with the actual network hardware (e.g.,
the Ethernet card), dealing with the format of the bits on the wire. Therefore, it is
tied to the local network technology, such as Fast Ethernet or 802.11b wireless. The
network layer handles routing, and it is the IP layer of the TCP/IP protocol suite. The
network layer is invisible to user programs. The transport layer handles the quality-
control issues of reliability, flow control, and error correction. The TCP/IP protocol
suite defines two widely-used transport protocols: UDP and TCP1.

There are several application protocols in the TCP/IP suite, including SMTP (for
email service), FTP (for file transfer), SHH (for secure login), LDAP (for distributed
directory services), and HTTP (for web browsing, which alone accounts for approxi-
mately 70% of all Internet traffic).

The most obvious way of hiding information within messages is to place data in
unused or reserved fields of protocol headers or trailers. However, that method of
steganography is easy to detect using simple intrusion detection systems, or is suscep-
tible to traffic analysis, which makes it insecure and not robust. Even if analyzing the
content of the hidden information becomes impossible, perhaps due to encryption, this
approach is weak. Our techniques for protocol steganography aim to achieve strong
steganography, wherein the system is both secure and robust.

A secure stego system can withstand an opponent that understands the system (or
even has grounds for suspicion), meaning that the opponent cannot determine with a
high degree of certainty the existence of the communication. A robust system can with-
stand an active attack, where the adversary makes legal (strong semantics-preserving)

1Other transport protocols, such as the Reliable Datagram Protocol (RDP), are defined but not widely
used.

2

■A;jpll«iit! (HTTP, SSH, LDAP, SMTP ...)

(TCP, UDP)

(IP, ICMP)

(Ethernet)

changes to the message. Given those goals and the intention to provide means of private
communication, our approach to protocol steganography focuses mainly on transport
layer protocols and application layer protocols, although other protocols at different
layers of the TCP/IP protocol suite could also be considered. In particular, this paper
describes how protocol steganography is feasible using the SSH protocol as proof-of-
concept.

There are many potential applications for protocol steganography, mostly when in-
formation hiding is used in order to achieve private communication [27] and, in some
cases, anonymity and plausible deniability, such as environments where censorship
polices restrict web access [9]. More specifically, protocol steganography seems to
be appropriate for environments where unobtrusive communications are required [13].
For example, in the military and intelligence agencies, even if the content of the com-
munication is encrypted, the detection of extra communication with a battlefield could
represent a sign of attack. Hiding information inside regular Internet traffic, such as
browsing results, will avoid the need for extra communication, thereby giving no in-
dication to one’s adversaries that something is about to happen. On the other hand,
considering a framework where the agents that wish to communicate secretly are not
necessarily the initiators of the communication, the ability to embed messages in a va-
riety of TCP/IP protocols gives us a much higher likelihood of being able to transmit
the secret message within a reasonable time bound.

2.1 Framework for Secret Communication

Our model for protocol steganography involves two agents that wish to communicate
secretly through channels of Internet traffic in a hostile environment (see Figure 2).
The agents A and B, named for Simmons’s [24] famous prisoners Alice and Bob, take
advantage of a communication path already in place between themselves or two arbi-
trary communicating processes, the sender and receiver. We assume that Alice wishes
to pass a message to Bob, and may in fact be operating in an environment over which
their adversary has administrative control (such would be the case if Alice were an
undercover investigator or intelligence operative).

Figure 2: Framework for Secret Communication.

Consequently, two scenarios are possible depending on whether or not agent A and
B are the same as the sender and the receiver, respectively. In the first case, agent
A and agent B are trying to hide secret information in some of their own harmless
messages, as in traditional steganography models. They both run a modified version
of the communicating software that allows them to convey the secret message. In the

3

second case, agent A and agent B are placed somewhere along an arbitrary communi-
cation path, modifying the message in transit to hide meaningful information. In short,
both the internal agent and the external confederate might be either end points of the
communication or middlemen, acting to embed and extract the hidden message as the
data passes them in the communication stream. In fact, the receiving middleman has
the option of removing the hidden message, thus restoring and forwarding the origi-
nal message. The midpoints where agents A and B can alter the message might be
within the protocol stack of the sending and receiving machines (which is still distinct
from the sending process), or at routers along the communication path. These arbitrary
boundaries are indicated by the dashed boxes in Figure 2.

Figure 3: Message Paths.

Considering all combinations of internal agents and external confederates and all
different points where the message can be altered yields six different roles for the
agents, as shown in Figure 3. In this discussion, following the established informa-
tion hiding terminology [20], agent A executes the embedding process and agent B the
extraction process, represented in the picture as a circle and a diamond, respectively.
As pointed out by Pfitzmann [20], the embedding and extracting processes required
the use of a stego-key, not shown in the picture. The cover (i.e. the original harmless
message) is m, and the stego-message (i.e. the message with steganographic content)
is m

′.

1. Agent A acts as sender and agent B as receiver—the message along the entire
path is m

′.

2. Agent A is a middleman, embedding information to the message on its way, and
agent B acts as receiver—the message from the sender to agent A’s location is
m, while from there to the endpoint is m

′.

3. Both agents are middlemen, and B restores the message to its original form—
the message from the sender’s point to where agent A’s location is m, from A’s
to B’s is m

′, and from there to the endpoint is m again, since extraction of the
hidden content occurred at B’s location.

4. Both agents are middlemen, but agent B does not restore the message—the mes-
sage from the sender’s point to the agent A’s location is m, and from A’s to the
receiver’s point is m

′, with the hidden information extracted at B’s location.

4

t

3.

4.

'4-

m

J=-*#-
0 Embedding
Extracting

5. Agent A is acting as sender, with B as a middleman extracting the embedded
information and restoring the original message—the message from the initial
point to agent B’s location is m

′, and from B’s location to the receiver’s point is
m.

6. Agent A is acting as sender and agent B is a middleman extracting the hidden
information without restoring the message as it travels to the receiver—the mes-
sage from the end to end is m

′, but B gets the hidden content somewhere before
the message reaches its destination.

Not every one of these scenarios might be realistic, but cases 1 and 3 certainly are.
Therefore, they have been the focus of this study. All the options where the hidden
content is extracted but the message is not restored seem very risky; in particular, case
4 where the message seen by the receiver is clearly different from that seen by the
sender, neither of whom are the agents communicating secretly.

Having the agents acting as middlemen in the communication stream provides sev-
eral advantages, because any packet that will flow past the locations where agents A
and B are can be modified (as long as a semantics-preserving embedding function is
available for the transport or application protocol in that packet). The idea is to lower
our susceptibility to traffic analysis, as there is no longer a single source/sink for the
stego-messages, and there is no specific protocol used. This also allows us to achieve a
higher bit rate as well as privacy, anonymity, and plausible deniability, in some cases.
An ideal situation would be that agent A is located on the last router inside the sender’s
domain (the egress router for that domain), and agent B is located on the first router out-
side the domain (the ingress router). This will have m

′ “on the wire” for the minimum
possible time, also lowering the probability of detection.

2.1.1 Adversary Models

Depending on the goals of steganalysis, adversaries can be active or passive [20]. Pas-
sive adversaries observe the communication in order to detect stego-messages, find out
the embedded information, if possible, and prove to third parties, when the case re-
quires it, the existence of the hidden message. Active adversaries attempt to remove
the embedded message without changing the stego-message significantly, i.e., they at-
tempt to provide strong semantic preservation. In some cases, active adversaries do
not need to verify the existence of the message before they attempt to block any se-
cret communication, thus playing appropriately with the bits of the messages that pass
through them is enough (e.g., zeroing unused header fields).

In steganography systems, adversaries can be passive or active [2], while in water-
marking and fingerprinting systems, generally, only active adversaries raise concern.
However, most of the literature in stegosystems deals with passive adversaries. For the
purposes of this study, both passive and active adversaries are taken into account, be-
cause of hostility of the Internet environment, the constant improvement of routers and
firewalls, and the goal of developing not only secure, but also robust, steganography
techniques.

5

2.2 Related Work

Handel and Sandford [11] reported the existence of covert channels within network
communication protocols. They described different methods of creating and exploiting
hidden channels in the OSI network model (see Figure 4, based on the characteristics
of each layer. In particular, regarding to the application layer, they suggested covert
messaging systems through features of the applications running in the layer, such as
programming macros in a word processor. In contrast, the protocol steganography ap-
proach studies hiding information within the information within messages and network
control protocols used by the applications, not inside images transmitted as attachments
by an email application, for example. They also considered techniques of embedding
information that require substituting existing modules of the source code that imple-
ments a particular layer, and some that not. In a similar order of ideas, when agent A
and agent B act as sender and receiver, respectively, some application modules will be
replace for embedding and extracting secret messages.

Figure 4: The OSI Idealized Network Model Layers.

Examples of implementation of covert channels in the TCP/IP protocol suite (see
Figure 1) are presented by Rowland [23], Project Loki [22], Ka0ticSH [12], and more
deeply and extensively by Dunigan [7]. These researchers focused their attention in
the network and transport layers of the OSI network model (shown in Figure 4). In
spite of that, Dunigan [7] did point out in his discussion of network steganography
that application-layer protocols, such as telnet, ftp, mail, and http, could possibly carry
hidden information in their own set of headers and control information. However, he
did not develop any technique targeting these protocols. More in detail, Rowland [23]
implemented three methods of encoding information in the TCP/IP header: manipulat-
ing the IP identification field, with the initial sequence number field, and with the TCP
acknowledge sequence number field “bounce.” Dunigan [7] analyzed the embedding
of information, not only in those fields, but in some other fields of both the IP and the
UPD headers as well as in the ICMP protocol header. He based his analysis, mainly,
in the statistical distribution of the fields and the behavior of the protocol itself. The
Project Loki [12, 22] explored the concept of ICMP tunneling, exploiting covert chan-
nels inside of ICMP ECHO traffic. All these approaches, without minimizing their
importance, suffer from two problems: low bandwidth and simplicity of detection or
defeat with straightforward mechanisms.

One such mechanism is described in Fisk et al. [10]. Their work defines two classes
of information in network protocols: structured and unstructured carriers. Structured

6

a;iiiill;iiJ

■jjawajjixj

l^t^iVrtli!<

iPhlliulililil

fti^asi

carriers present well-defined, objective semantics, and can be checked for fidelity en
route (e.g., TCP packets can be checked to ensure they are semantically correct accord-
ing to the protocol). On the contrary, unstructured carriers, such as images, audio, or
natural language, lack objectively defined semantics and are mostly interpreted by hu-
mans rather than computers. The defensive mechanism they developed aims to achieve
security without spending time looking for hidden messages: using active wardens
they defeat steganography by making strong semantic-preserving alterations to packet
headers (e.g. zeroing the padding bits in a TCP packet). The most important consid-
erations to their work related to protocol steganography are the identification of the
cover-messages in used as structured carries, and the feasibility of similar methods of
steganalysis that target application-layer protocols.

2.3 A Case Study: SSH

The SSH protocol is defined by the Internet drafts [28, 29, 30, 31] of the Internet Engi-
neering Task Force (IETF). It is a “protocol for secure login and other secure network
services over an insecure network” [30]. The main goal of the protocol is to provide
server authentication, confidentiality, and integrity with perfect forward secrecy. There
are several, both commercial and open-source, implementations of SSH. The latest ver-
sion of the protocol is SSH2 and, being version most widely and currently used, it is
the one object of this study.

Figure 5: SSH2 Protocol Architecture.

The SSH2 protocol consists of three major components as illustrated in Figure 5:

• Transport Layer Protocol

It provides server cryptographic authentication, confidentiality through strong
encryption, and integrity plus, optionally, compression. Typically, it runs over a
TCP/IP connection listening for connections on port 22.

• User Authentication Protocol

It authenticates the client-side user to the server. It runs over the transport layer
protocol.

• Connection Protocol

7

SSH Authentication

SSH Transport O- SSH Authentication

SSH Transport

It multiplexes the encrypted tunnel into several logical channels. It runs over the
user authentication protocol. It provides interactive login sessions, remote exe-
cution of commands, forwarded TCP/IP connections, and forwarded X11 con-
nections.

Figure 6: SSH2 Binary Packet Protocol.

In particular, the Transport Layer protocol defines the Binary Packet Protocol,
which establishes the format SSH packets follow (see Figure 6). According to the
specification [31], each packet is composed of five fields:

Packet Length

Number of octets representing the length of the packet data, not including
the MAC or the packet length itself.

Padding Length

Number of octets representing the length of the padding.

Packet Data

The payload, the actual content of the message. If compression has been
negotiated, this field is compressed.

Random Padding

An arbitrary-length padding, such as the total length of packet length

+ padding length + packet data + padding is a multiple of the
cipher block size or 8, whichever is larger.

MAC (message authentication code)

When message authentication is negotiated, it contains the MAC octets.
Only initially, the value of the MAC algorithm is none (before authentica-
tion).

An SSH client and server start the communication negotiating an encrypted ses-
sion, followed by client password authentication. Establishing the encrypted session
includes exchanging keys and negotiating algorithms (key exchange algorithms, server
host key algorithms, encryption algorithms, MAC algorithms and compression algo-
rithms) as well as determining a preferred language. The password authentication pro-
cess is similar to the one in any remote login application, with the advantage of being
more secure due to encryption. The password is prone only to key logging.

8

^F Sum MAE

Encrypted ^

Optionally compressed ^

The main reason for selecting the SSH protocol as a case of study is the randomness
of the content of its packets, which is an excellent factor when trying to blend hidden
content in what is considered a “normal” traffic. In addition to that, it is widely used but
encrypted, fact that by itself can keep adversaries away from trying to analyze its con-
tent, and, as with many other protocols, and pointed out by Barrett and Silverman [4]
its design does not attempt to eliminate covert channels.

2.3.1 SSH Potential for Information Hiding

There are several potential places where information can be hidden without breaking
the SSH protocol. Four of those ways of steganography are described below.

• Generating a MAC-like Message

As shown in Figure 6, the SSH2 specification defines the fields:

uint32 packet length
octet padding length
octet[n1] payload; n1 = packet length - padding length - 1
octet[n2] random padding; n2 = padding length
octet[m] mac (message authentication code); m = mac length

where octet[m] contains the computed MAC. The MAC is normally computed
with the previously negotiated MAC algorithm using the key, the sequence num-
ber of the packet, and the unencrypted (but compressed, if compression is re-
quired) packet data. The MAC algorithms defined by the protocol are hmac-
sha1, hmac-sha1-96, hmac-md5, and hmac-md5-96 whose digest lengths vary
from 12 to 20 octets. Therefore, generating a MAC-like message will open the
possibility to transmit from 12 to 20 octets of information.

• Generating Random Padding-like Message

Basically, this idea is similar to the previous one, but stores the message in the
random padding field.

• Hiding information in as part of the Authentication Mechanism

The following is the defined format for the authentication request established by
the SSH authentication protocol:

octet SSH MSG USERAUTH REQUEST
string user name (in ISO-10646 UTF8 encoding)
string service name (US-ASCII)
string method name (US-ASCII)
. . . method-specific data

The first four fields cannot be modified if we are to conform to the protocol,
but there is the possibility of embedding some information in the method-

specific data field and still retaining the required semantics.

The format of the response to the authentication request looks like this:

9

octet SSH MSG USERAUTH FAILURE
string authentications that can continue
boolean partial success

where authentications that can continue is a comma-separated list of
authentication method names.

When the server accepts authentication, the response is:

octet SSH MSG USERAUTH SUCCESS

but only when the authentication is complete.

We defined a handshake between client and server about what method/type of
steganography is going to be used in the MAC-like message generation or ran-
dom padding-like message generation. The idea is to take advantage of the
parameter exchange done by the regular authentication mechanism. The two
agents, A and B, just need to agree on a covert meaning for the method-specific
data sent as an option. Moreover, the protocol recommends the inclusion in the
list of authentications that can continue only those methods that are
actually useful; it also says that even if there is no point in clients sending re-
quests for services not provided by the server, sending such a request is not an
error, and the server should simply reject it. Thus, sending a bogus list of au-
thentications that can continue is not an error.

Another advantage of using the authentication mechanism for hiding data is the
fact that the plain text would be encrypted, so no matter what is sent in the string
fields, it will not be subject to traffic analysis.

• Adding additional encrypted content to the packet

The previous two approaches are only effective when the agents are the same as
the sender and receiver (see Figure 2). But the following idea explores having,
agent A and agent B, located somewhere along the line of communication of two
arbitrary entities that produce SSH traffic.

Intercepting the traffic and inserting an encrypted-like portion between the en-
crypted part of the packet and the MAC is an option, as detailed in Figure 7. The
inserted portion consists of two parts: the hidden message itself and a “magic”
number that tells agent B there is a hidden message in that SSH packet.

Figure 7: Adding an encrypted portion with a hidden message to a regular SSH packet.

This option offers the advantage of having agents communicating secretly any-
where and using any SSH traffic, but it requires careful study of its susceptibil-
ity to traffic analysis. Traffic analysis might indicate that those modified SSH

10

Packet Padding Packet
Length Length Data

Random
Padding

Magic
Nuffltor

Hidden
M«aga9» MAC

Encrypted

Optionally compressed ̂
-^

Encrypted^

packets are longer than normal, which will indicate suspicion of being a stego-
message and, ultimately, compromise the security of the method. The SSH pro-
tocol standard states that any implementation must be able to handle packets with
uncompressed payload length of 32,768 octets or less, being the maximum total
packet size 35,000 (including length, padding length, packet data, padding, and
MAC). Therefore, the length can vary widely. How much variance there actually
is in SSH packet length in typical traffic is an open question. Another question
that needs to be answered is where along the communication stream the agents
can be placed so an adversary analyzing the traffic cannot perceive the length
difference (i.e., the adversary is not able to get both the original packet and the
packet containing the stego-message). Another issue with this approach is that
the “magic” number needs to be of certain minimum length in order to minimize
the probability of having the magic number appear naturally in the data stream.
We have chosen a two octet magic number for our initial implementation, but this
introduces a one in 64k chance that we will incorrectly interpret a cover-message
as a stego-message.

2.3.2 Prototype Implementation

The prototype of secret communication was implemented in C, modifying the version
3.4. of OpenSSH (http://www.openssh.org), a popular open-source SSH product. The
approach for information hiding selected was generation of message that looks like a
MAC, which is the first one of the potential cases described in the previous section.
In consequence, this implementation assumes that the agents secretly communicating,
agent A and agent B, act as sender and receiver, respectively. That corresponds to case
1, described in Section 2.1 and illustrated in Figure 3.

In order to simulate the randomness of the MAC, the embedded messages are previ-
ously compressed and then encrypted. The modified version of the SSH client reads the
content to be embedded from a file compressed with GZip (http://www.gzip.org/) and
encrypted with the GNU Privacy Guard software (http://www.gnupg.org/), using the
Blowfish algorithm. It embeds exactly the same amount of octets reserved for comput-
ing the MAC according to the previously negotiated algorithm during the client-server
handshaking. The technique used in the stegosystem is a cover generation method,
which involves the generation of digital objects with the purpose of being cover for a
secret communication [13]. Basically, when substituting the original MAC with the
stego-message, a cover is generated, a MAC-like hidden message. At the receiving
end, the modified version of the SSH server ignores recomputing the MAC and com-
paring it with the one gotten from the client, since the server is acting as agent B, and
gets the MAC-like message and saves it into a file.

During an SSH session, once encryption has been negotiated and authentication
performed, SSH transmits a packet for every keystroke. That means for every key
typed a packet in the binary format is sent, and that implies a MAC is computed for
every keystroke. Generating a MAC-like message for every keystroke opens a great
opportunity for secret communication through an overt channel, since as much hid-
den data as the MAC length can be transmitted with every keystroke. More in detail,
OpenSSH uses the following C structure to store the MAC:

11

struct Mac {
char *name;
int enabled;
const EVP MD *md;
int mac len
u char *key;
int key len;

};

where mac len represents the length of the MAC as specified in the standard. De-
pending on the MAC algorithm negotiated, this value is between 12 and 20 octets. The
same mac len was used to generate the stego-messages. Therefore, at least 12 octets
of information can be sent with every keystroke, once a MAC-like message is built.

The implementation was a proof-of-concept that illustrated what could be done in,
for example, a scenario where a military base regularly connects with computers from
other government agencies using means of secure login and encryption. In that sense,
even if the communication is subject to traffic analysis, a traffic increase in critical
situations will not be observable because the agents can camouflage special commands
within the regular communication traffic. The adversary would not be able to guess
they are running their own version of OpenSSH.

2.3.3 Discussion

The implemented approach, although simple, represents a proof-of-concept of the idea
of application-layer protocol steganography. A stego-message is embedded into a
packet without altering the semantics established by the protocol standard. Moreover,
it looks “normal” to simple traffic monitoring. However, several issues need to be
discussed and some other requires further exploration.

The first issue of concern is the impossibility of verifying the actual payload of
the message was correctly transmitted, as a consequence of replacement of the MAC.
Information about the error rates in transmission of SSH packets will be useful for
better understanding the validity of this approach. However, augmenting a short MAC
could be another way of the same idea of using the MAC to embed secret information.
Since the SSH specification indicates that the length of the MAC can be between 12
and 20 octets, depending on the algorithm, it would be possible to select an algorithm
with a short MAC and pad the stego-message to it. For example, if the hmac-md5-

96 algorithm [31], which computes a MAC of 12-octet length, is used, we can add 8
octets of secret information to each packet, bringing the pseudo-MAC up to the 20-octet
limit. Of course, for this approach to work, the agents A and B must agree in advance
on what algorithm to use, but that is very simple to achieve through the authentication
mechanism. Moreover, when they are not planning to communicate secretly, agent A
and agent B can choose to use the hmac-sha1 algorithm, which computes a MAC of
length 20, so the total length of their average SSH packet does not raise suspicion.

If robustness is defined as the impossibility of removing the stego-message without
destroying the cover message [13], the embedding of a MAC-like message is robust.

12

An active adversary cannot recompute the MAC without knowledge of the encrypted
payload of the packet, the keys, and the algorithms used. Therefore, any change on the
MAC will be taken at the receiving end as a signal of existence of a middleman in the
communication stream. SSH will issue a warning and the session will be interrupted. In
a similar order of ideas, if the attacker modifies one of the MAC-like stego-messages, it
will be easy to detect because of the encryption and compression. If the hidden message
is not meaningful to agent B, a warning and action similar to the case of a corrupted
MAC can be taken. Therefore, due to the behavior of the protocol, an active adversary
cannot attack the stegosystem without being noticed and also disrupting legitimate SSH
traffic. In this particular case, the minimal requisite fidelity pointed out by Fisk et
al. [10] (degree of signal fidelity that is both acceptable to end users and destructive
to cover communications) does not apply since the MAC cannot be corrupted to be
acceptable.

It seems to be some controversy in the field about what is the better way of defin-
ing a perfectly secure steganography system, as reported by Moskowitsz et. al [17]
and Katzenbeisser and Petitcolas [14]. However, information theory and the ideas of
security taken from cryptography are today considered as the “right” approach to se-
cure steganography. Most of the information-theoretical definitions [5, 2, 15, 32] and
some game-theoretical definitions [8] of secure stegosystems assume prior knowledge
of the distributions of the covers in order to quantify the information a passive adver-
sary can gather from observing the communication channel. Our assumption made
in the implementation, regarding the uniformity of the distribution of both cover and
stego-messages, requires more detailed study. That study would involve estimation of
the probabilistic model of the cover as well as the stego, and performing statistical
tests to prove the randomness of the hidden message. It is not enough to say that the
approach is secure based semantic preservation; information-theoretical analysis must
be done.

2.4 Future Work

To this point, very little work has been done in exploring the distribution model of the
covers and the stego-messages. Gathering enough data to estimate those models, in
order to verify that a passive adversary with the knowledge of the distributions and the
power to compare them cannot still determine the existence of a hidden message, is the
next step.

The presented implementation of SSH protocol steganography involves only the
first case of those described in Figure 3; we are currently developing cases where the
agents act as middlemen. For that, we are implementing a Packet Transmogrifier2 (PT):
software that embeds a message into an arbitrary stream of packets, and later extracts
that hidden message. The PT will either run within an OS kernel or on a router along
the communication path between the two agents—agent A will use the PT to transform
m into m’, and agent B can use the PT to reverse the transformation.

In principle, the idea of building the packet transmogrifier is conceived as a com-
bination of several individual packet transformers (each of which could be used by an

2With appropriate apologies and thanks to Bill Watterson, creator of “Calvin and Hobbes” [25].

13

individual application to embed a message in a data stream). This will give us the flex-
ibility of embedding hidden messages in packets of multiple types corresponding to
different protocols, and with a variety of sources and destinations.

The embedding functions that the PT will carry are of a great deal of interest. We
are investigating several approaches, depending on the protocol. For example, it seems
plausible to use mimic functions [26, 27] to tailor the distributions of text content,
resulting from browsing queries, in regular HTTP traffic; we can also embed data in
HTTP cookies, DNS traffic, MIME data, etc.

Furthermore, we are looking into ways of maximizing the bandwidth of the secret
communication. Towards that issue, we are searching for algorithms of the form m =
f(p), where p is the packet given as input to the transmogrifier, and m is the hidden
message. In other words, rather than embedding a secret message, we search for an
extraction algorithm that would produce m if given p, and embed a representation of
that algorithm within the packet. While this is an impractically hard problem if we are
forced to find an embedding (really, the corresponding extraction) for a complete, arbi-
trary message into an arbitrary packet in the general case, we can reduce the complexity
of the problem in three ways:

1. having a small family of extraction functions from which we choose, and only
embed enough information to distinguish which member of the family should be
used for that packet,

2. not requiring that we extract data from every packet, and

3. not requiring that we extract the full message from a single packet.

By relaxing the third condition sufficiently, we can all but guarantee that we can
extract at least one octet from almost any packet. Because a prime consideration in
the effectiveness of the transmogrifier is its per-packet latency, we are first considering
simple extractions. When we have obtained performance measurements, we will de-
vise more complex and diverse algorithms and analyze the overall effectiveness of the
approach. There is a natural tension between the achievable bandwidth and the ease of
finding an embedding (richer embeddings, yielding higher bandwidth, will be harder to
find, and therefore increase the latency of the packets, which adversely affects network
performance).

The most direct approach to embed the choice of algorithm is to assign each algo-
rithm from the family an index code and to embed that code. Given the small number of
algorithms we envision, this is a trivial amount of information (which could be carried
in the MAC of an SSH packet, or embedded in a cookie within an HTTP request).

2.5 Conclusion

In this paper, we have described semantics-preserving application-layer protocol steganog-
raphy, and have presented methods for embedding secret messages in application-layer
protocols. We have developed the notions of strong and weak semantics preservation.
Our approach has several advantages over prior work:

14

• Because of its applicability to a wide range of protocols, we can embed messages
in the vast majority of network traffic on the Internet.

• The use of non-source stego (en route embeddings and extractions) increases
the available bandwidth and complicates traffic analysis because of the ability to
choose traffic from a variety of senders and receivers.

• Semantics preservation dramatically increases the security of our steganography.

As a proof-of-concept, we implemented end-to-end protocol steganography in the
SSH2 protocol. The software may be obtained from the authors. In the near future, we
will expand our family of embedders/extractors to include HTTP, and will complete
implementation of the Packet Transmogrifier. This will allow us to perform on-the-fly
message embedding and extraction while a packet is en route. We will also perform
further analysis on the distributions of our covers and stego-messages.

3 Interface-Based Intrusion Detection

The aim of the Interface-Based Intrusion Detection (IBID) project is to develop purely-
local detection mechanism against network intrusion. Our current approach is to build
a rule-based system suitable for embedding in a secure network interface card. Our first
implementation is a Virtual Smart NIC for the Linux operating system, where we have
interposed a control layer between the interface card and the kernel. Our layer replaces
the normal Linux interrupt handler, and diverts all network traffic (both incoming and
outgoing) to our filtering module.

3.1 Design Goals

IBID System is different from other intrusion detection systems or packet filters in the
following aspects:

Locality Designed to be directly embedded into a network card, once IBID System
detects an intrusion, its countermove decision is immediately made and executed
without any delay. The system is not only cable of detecting intrusions, but also
effectively coping with them.

Flexibility Although the IBID System examines a network packet at a time, it differs
from packet filters in the flexibility of rules user can define, and expandability
that may surpass current Network Intrusion Detection Systems (NIDS). IBID
provides stateful filtering.

Performance and Stability The core of IBID (Virtual Smart Network Interface Card)
is designed as a Linux Loadable Kernel Module (LKM), for performance opti-
mality (avoiding interruption during the packet filtering and minimizing memory
transfer between kernel space and user space).

15

Rule
Base

Rule
Compiler

NIC

VSNIC
IBID

Controller Control
Commands

Rules

Figure 8: Architecture Overview

Traditional network IDS do not prevent attacks, and firewalls cannot do complex
filtering because they are bottlenecks on overall network throughput. Providing local
filtering allows each node to protect itself, and also distributes the cost of providing
stateful, complex filtering.

3.2 Software Architecture Overview

The IBID system consists of four components: the (Virtual) Smart Network Interface
Card (VSNIC), the Rule Compiler, the Rule Base, and the IBID Controller (Figure 8).

The SNIC works as a core component of the IBID System. In the current virtual
implementation, it consists of an network interface card device and a loadable kernel
module (LKM) comprising a network driver and a virtual machine which actually per-
forms the packet filtering. The IBID Controller is a user interface module. It is executed
as a user process, so that a user can define/delete/reset the rules, and start/stop/monitor
the system. The Rule Base module receives a set of rules from a user through the IBID
Controller, modifies its rule base, and deduces a conclusion from the rules it contains.
The Rule Compiler receives a message of the conclusion from the Rule Base, compiles
them into a lower-level representation (in the current implementation, BPF instruction
codes) and sends the code to the SNIC.

3.3 Software Components

The system has been developed under the Linux operating system with a Pentium CPU
and a 3c905B 100 BaseTX network card. We used kernel release 2.4.9, and the 3c59x
network driver for the base of the VSNIC.

16

Network Card

3c59x_ibid

kernel

Network Card

filter_ibid

3c59x_ibid

Data Transfer

netif_rx()

Data Transfer

vs_3c59x

(a) original network driver (b) IBID network driver

ibid_rx()

Figure 9: Data paths through the kernel

3.3.1 VSNIC (Virtual Smart Network Interface Card)

Network Interface Module

Our loadable kernel module that implemented the VSNIC is called vs 3c59x. Its pri-
mary purpose is to serve as an interface between the network device and the kernel,
just like the original device driver. One difference is, however, while 3c59x calls the
netif rx() function in the kernel when it completes the necessary data transfer (Figure
9, part (a)), vs 3c59x first calls ibid rx() function in itself, and calls netif rx() after the
completion of that filter function (Figure 9, part (b)).

This procedure assures that only acceptable packets are sent to the packet han-
dlers of the kernel. In other words, the kernel won’t even know that the packet has
reached the network card if it was rejected by the VSNIC. This approach obviously
places additional overhead on packet handling, but our focus in the software prototype
is proof-of-concept rather than raw performance. Performance can be improved by
either exploiting a multiprocessor architecture and giving vs 3c59x priority on the sec-
ond processor, or building a hardware implementation of the SNIC (this is part of our
planned future work, as described in the Conclusions). The filter codes are optimized
as well, but this will be discussed in later sections.

The secondary task of vs 3c59x is to serve as an interface between the IBID Con-
troller and the filter functionality. The IBID Controller requests the addition, deletion,
reseting, starting, or stopping of filters by throwing an interrupt via the ioctl() system
call. The interrupt handler in vs 3c59x catches the interrupt and processes the request
according to the parameters given to ioctl().

17

IBID controllerkernel

vs_3c59x Interrupt
Handler

interrupt

ioctl()

Figure 10: Operating VSNIC via ioctl()

Filter Function

The filter function used in the IBID System is borrowed from Linux Socket Filter
(LSF), which is originally borrowed from the Berkeley Packet Filter (BPF). Thus, the
design concept of the filter function is just the same as that of BPF:

1. Protocol independency

2. General instruction set

3. Minimized data reference

4. A single C switch statement represents decoding function

5. Using physical registers

A detailed description on BPF can be found in Maccane and Jacobson [SMVJ1992],
so here we see briefly how it works.

Virtual Machine Architecture

As Maccane and Jacobson mentioned, BPF adopted a virtual machine architecture from
the CMU/Stanford Packet Filter (CSPF) [SMVJ1992]. The advantage of this archi-
tecture is that it can reduce data references and comparisons, by explicitly skipping
unnecessary evaluations of elements in a packet. For example, in order to verify the
condition A AND (B OR C), the virtual machine does not necessarily verify all the
predicates. Instead, it applies standard lazy evaluation with short-circuiting operators,
as in the C programming language, and aborts evaluation of the logical predicate as
soon as the final result is known.

For a bit more realistic example, instruction codes for a filter to accept all IP packets
except those from 128.3.112.1 would be represented as follows:

ldh [12]
jeq #0x0800, Next, Reject

18

Next:
ld [26]
jeq #0x80037001, Reject, Accept

Accept:
ret 1

Reject:
ret 0

The first comparison checks for the IP protocol, and the second checks for the IP
address 128.3.112.1. If the packet is not an IP packet, there is no point in looking for
the IP address (in fact, doing so would be semantically nonsensical), so the packet is
immediately rejected (by the branch to the Reject label). Only if the packet was an
IP packet is the address then checked for a match.

The representation using predicate logic can be:

(Ether-Protocol(IP)) AND (NOT Ip-Source(0x80037001))

It should be noticed that the number of evaluations required to verify the repre-
sentation is smaller in the former representation. While the latter always requires two
evaluations, the former skips the second evaluation when Ether-Protocol(IP) is known
to be false. The translation between above two representations is a task of the Rule
Compiler and Rule Base system, which will be explained in the next section.

Rule Base System

The translation process is divided into two parts. The first half is performed by the
Rule Base. The Rule Base translates a user-specified representation of a filter into a
protocol-independent notation, based on the rules (or functions) the system already
knows. For example, the Rule Base should know a rule such as “If a value of a half
word at offset 12 is 0x0800 then Ether-Protocol(IP) is true,” i.e., the packet is an IP
packet. By applying unification and inference procedures (modus ponens, etc.) to
those rules, the system can deduce a conclusion which is to be passed to the Rule
Compiler. The Rule Compiler receives the conclusion and translates it into instruction
codes for the virtual machine. The conclusion must be in a ground form, which is able
to be directly translated into instruction codes. By a ground form, we mean that all the
predicates in the form must be terms that the Rule Compiler can understand. Thus far,
(Offset x y z) is the only term known to the Rule Compiler. By (Offset x
y z), it is meant that the value at the offset of y bytes, with the length of x bits is z.
For example, a ground form deduced from the above predicate is:

(Offset 16 12 0x0800) AND (NOT (Offset 32 26 0x80037001)

Implementation

In our current implementation using LISP, rules are introduced to the system by a
function called tell, and the deduction is returned by a function called ask (see
Figure 11).

19

Rule Base

Rule Base

then (halfword 12 0x0800))))
<= (tell ’((if (Ether-Protocol IP)

<= (ask ’(Ether-Protocol IP))

=> (Offset 16 12 0x0800)

Figure 11: Tell and Ask

The function ask performs forward-chaining from the given condition, and de-
duces a ground form. An example of the performed deduction is:

(AND (Ether-Protocol IP)
(AND (IP-Protocol TCP)

(OR (IP-Source 0x80037001)
(IP-Source 0x80037002))))

By modus ponens and IP Rules, this becomes:

=> (AND (Offset 16 12 0x0800)
(AND (AND (Offset 16 12 0x0800)

(Offset 8 23 0x6))
(OR (AND (Offset 16 12 0x0800)

(Offset 32 26 0x80037001))
(AND (Offset 16 12 0x0800)

(Offset 32 26 0x80037002)))))

then by distribution of AND:

=> (AND (Offset 16 12 0x0800)
(AND (AND (Offset 16 12 0x0800)

(Offset 8 23 0x6))
(AND (Offset 16 12 0x0800)

(OR (Offset 32 26 0x80037001)))
(Offset 32 26 0x80037002)))))

and by distribution of AND again:

20

=> (AND (Offset 16 12 0x0800)
(AND (Offset 16 12 0x0800)

(AND (Offset 8 23 0x6))
(OR (Offset 32 26 0x80037001)))

(Offset 32 26 0x80037002)))))

and finally, by elimination of AND:

=> (AND (Offset 16 12 0x0800)
(AND (Offset 8 23 0x6))

(OR (Offset 32 26 0x80037001)))
(Offset 32 26 0x80037002)))))

The equivalent representation in ordinal predicate logic would be:

Ip AND Tcp AND (Ips-1 OR Ips-2)
=> Oip AND (Oip AND Otcp) AND ((Oip AND Oips-1) OR (Oip AND Oips-2))
=> Oip AND (Oip AND Otcp) AND (Oip AND (Oips-1 OR Oips-2))
=> Oip AND (Oip AND (Otcp AND (Oips-1 OR Oips-2))
=> Oip AND (Otcp AND (OIps-1 OR Oips-2))

Ip := Ether protocol is IP
Tcp := IP protocol is TCP
Ips-1 := IP source is 128.3.112.1 (0x80037001)
Ips-2 := IP source is 128.3.112.2 (0x80037002)

Oip := 16 Bits at offset 12 is0x0800
Otcp := 8 Bits at offset 23 is 0x6
Oips-1 := 32 Bits at offset 26 is 0x80037001
Oips-2 := 32 Bits at offset 26 is 0x80037002

With the rules predefined:

(IF (Ether-Protocol IP) THEN (Offset 16 12 0x0800))
(IF (IP-Protocol TCP) THEN (AND (Ether-Protocol IP)

(Offset 8 23 0x6))
(IF (IP-Source x) THEN (AND (Ether-Protocol IP)

(Offset 32 26 x)

Notice, once a predicate is declared in the left-hand side of a rule, it can be used in
the right-hand side of other rules, just like a predicate with Offset. Variables can be
used in rules. Any symbols starting with a small letter are considered as a variable, and
will be unified with a filter statement.

The syntax for the Rule Base can be defined as below:

<rule> := (IF <predicate> THEN <predicate>)

21

<predicate> := (<predicate>)
| (AND <predicate> <predicate>)
| (OR <predicate> <predicate>)
| (NOT <predicate>)
| (symbol {<value>}*)
| Offset <value> <value> <value>

<value> := symbol

Rule Compiler

The Rule Compiler is implemented using libpcap. This library provides an interface
for operating packet filters as well as compiling a given string into a filter. As seen
above, the Rule Compiler in the IBID architecture uses only the compiling routines
(gencode.c) of libpcap and lets the Rule Base do the remaining tasks. We are cur-
rently developing a Rule Compiler from scratch so that we can enrich the original BPF
instruction set and perform further optimization.

3.4 Conclusion and Future Enhancements

Starting from the goal as mentioned above, we built the IBID System from modularized
software components. In terms of enhancement of the functionality of the system, there
are four areas we can examine:

1. Enrichment of the rules: As described in 2.2.1, this can be done via the IBID
Control module. Users can define a new rule whenever they encounter a new sig-
nature, as well as a new protocol. This knowledge engineering part contributes
to actual intrusion detections, and should be done on an ongoing basis, once the
system development is complete.

2. Enhancement of the components: This includes improving an user interface of
the IBID Control module, improving the Rule Base with additional inference
rules or syntax, or optimization of the Rule Compiler. An enhancement of each
individual component should be able to be done independently.

3. Hardware implementation of the Smart NIC. We are in the early stages of de-
veloping an FPGA-based hardware prototype of a smart NIC. We will first im-
plement a Berkeley Packet Filter (BPF) virtual machine, and transport our rule-
based filtering system from the Linux kernel to the SNIC. We are still considering
whether to use a processor core (such as the PPC core in the Xilinx Virtex-II Pro)
or to implement the BPF interpreter directly in the FPGA (this will enable us to
use simpler, cheaper components).

4. Expansion of the underlying architecture of the system: Starting from an en-
hancement of BPF instruction set, this must involve all the modules: Rule Com-
piler, Rule Base, and IBID Controller. For example we may want to implement
another register into the virtual machine (for example, for logging purpose) and
specific operations on it.

22

The original BPF is stateless, and is an accumulator-based architecture. This
keeps the code simple, but prevents us from performing certaintypes of filtering,
such as that based on overlapping fragments. After we have the initial hardware
implementation tested and debugged, we will devise extensions to the core BPF.
We know that we will extend the BPF core to include state, and will examine
common intrusion signatures to determine what additional features should be
added.

We can enhance the Rule Base by adding a function evaluation feature as an ex-
ample for enhancement of the components. If users can define functions to be used in
rules, rules become more concise, flexible and intuitive. Using the example of 2.2.3,
we can compare rules defined without a function, and rules defined with a function:

Ether-Protocol rules without a function:

(IF (Ether-Protocol IP) THEN (Offset 16 12 0x0800))
(IF (Ether-Protocol ARP) THEN (Offset 16 12 0x0805))
(IF (Ether-Protocol RARP) THEN (Offset 16 12 0x0806))

Ether-Protocol rules with a function:

(IF (Ether-Protocol x) THEN (Offset 16 12 (ether x)))

The Rule Base knows a rule as, “If Ether-Protocol is IP, then a value of a half
word at offset 12 must be ether(IP).” And it knows a function ether such that ether
returns the Ethernet protocol identifier for the given protocol. When applied to IP,
ether returns 0x0800. The proposed syntax for this Rule Base is in Figure 12.

Notice every predicate now ultimately defines a comparison of values, and Offset
becomes a two-argument function. The function definition and evaluation may be done
by the implemention language environment (ex. LISP interpreter), or integrated into
the Rule Base using the implemention language.

The current IBID system, with its defined rules, has not yet been integrated into any
intrusion detection system. However, it has considerable promise for such application
in today’s network intrusion detection systems—benefits such as locality, flexibility,
modularity, and domain-independence of the rule base system.

4 Computational Resiliency

The Computational Resiliency project developed mechanisms to allow applications to
respond to attacks and faults, thereby restoring application readiness and ensuring con-
tinued operation. These mechanisms include support for replication, migration, cam-
ouflage, and mutation. The deliverables on this contract include software prototypes,
formal models, and the information warfare-hardening of two applications of interest
to DARPA/DoD.

23

<message> := <rule-def> | <func-def>
<rule-def> := (IF <predicate> THEN <predicate>))
<func-def> := (symbol {(IF {<value>}* THEN <value>)}*)

<predicate> := (<predicate>)
| <predicate> AND <predicate>
| <predicate> OR <predicate>
| NOT <predicate>
| (<value> = <value>)

<value> := (<function> {<value>}*)
| symbol

<function> := Symbol

Built-in functions : offset, +, -, *, /

Figure 12: Syntax for Rule Base with functions

During this project, we developed a core library supporting Computational Re-
siliency. This library includes automated support for replication, migration, agreement,
and functionality mutation in distributed applications scientific.

As originally specified, the goals and milestones of the project were as follows:

• Formal models

– Core calculus

– Resource policy mechanism

– Equivalence notions

– Protocol analysis

– Extensions and analysis

• Software Development

– Extend SCPlib Migration

– Simple camouflage and decoys

– Functionality mutation

– Advanced camouflage

– Policy frameworks

– Computational Resiliency-aware schedulers

• Integration of two applications of interest to the DoD with the Computational
Resiliency library

24

The first year of the project was spent solidifying the base library, adding thread
replication, and extending migration. The actual achievements deviated somewhat
from the initial goals, as it was necessary to ensure that the base library had a suffi-
ciently reliable and secure base that the higher-level services would have a solid foun-
dation.

The goals achieved for the library included:

• Passive replication with checkpointing for CRlib applications

• Active replication at a user-settable level

• Split/merge for replicated thread groups

• Message authentication using DSS

• Fuzzy agreement protocols

• Synchronous and asynchronous liveness checking

Lessons Learned
The primary lesson taken away is our dependence on the difficulty in increasing the

resiliency of an application in isolation from the underlying system, and in the face of
a determined, patient adversary. Our approach works well for attacks and failures that
occur in the context of the application, but we were faced with a dilemma:

• assume that the base system provided stability and resistance to external attacks,
and concentrate on the goals as put forth in the original proposal, thereby ignor-
ing large classes of attacks, and leaving ourselves susceptible to them, or

• fortify the base system before proceeding with the development of the scheduling
and camouflage systems.

In particular, we felt it necessary to deal with issues involving agreement, splitting
and merging functionality of all threads in a group (necessary for future work in camou-
flage), and additional replication schemes (necessary to support scheduling alternatives
in future work) before proceeding.

In its current state, our Computational Resiliency library will deal with classes of
attacks and failures that:

• disable a subset of the threads in a group (either by killing processes or crashing
the machines where they run), in a fail-stop sense;

• compromise a subset (up to 1/3 the total threads; 1/2 if the optional DSS authen-
tication is used) leading to Byzantine failures;

• attempt to use man-in-the-middle techniques or spoofed messages to disrupt
computation.

25

In either of the first two cases, the number of replicated threads will be restored to
the prior level at the next liveness check. The use of signed messages for authentication
thwarts the third class, and increases resiliency against Byzantine failures.

The CRlib will not help in the face of an adversary who is patient, stealthy, and
puissant—such an adversary that might

1. break into multiple systems (potentially all of them where our jobs are running)

2. map the system and observe which processes are running CRlib jobs

3. coordinate an attack sufficient to compromise more than 1/2 to cause Byzantine
failure, or to kill all threads in a group.

It is because of this type of attacker that we specified a ”safe zone” in the original
proposal. If we can rely on such a zone, then we can limit our exposure to these attacks
by ensuring that less than 1/2 of our threads run outside the zone. It is unclear to us
whether this is a reasonable stance to take.

The continued development of camouflage techniques may provide additional pro-
tection against these attacks. Even with excellent camouflage, there will be valid rea-
sons to run ”in the open” under a low threat condition. In that case, it is critical that
intrusion detection systems recognize attacks and reconnaissance activity extremely
early, so that camouflage can be enabled before the attackers have compromised many
systems, giving them the ability to observe system transitions from uncamouflaged to
camouflaged execution, thereby rendering the camouflage ineffective.

The following journal papers summarize the results of the project:

1. J. Lee, S. J. Chapin, and S. Taylor, ”Computational Resiliency”, to appear in a
special issue of the journal Quality and Reliability Engineering International on
Computer Network Security, 2003.

2. J. Lee, S. J. Chapin, and S. Taylor, ”Reliable Heterogeneous Applications”, to
appear in IEEE Transactions on Reliability, special issue on Quality/Reliability
Engineering of Information Systems, 2003.

3. Norka Lucena, Steve J. Chapin, and Joohan Lee. ”Assuring Consistency and
Improving Reliability in Group Communication Mechanisms in Computational
Resiliency,” IEEE Workshop on Information Assurance and Security, West Point,
New York, 2003.

5 Conclusion

This report has summarized the results for three projects sponsored by the Systems
Assurance contract. The prototype software has been delivered on CD-ROM.

26

References

[1] Ross Anderson, editor. Information Hiding: Proceedings of the First Interna-
tional Workshop, Cambridge, U.K., May 30-June 01, 1996. Springer.

[2] Ross J. Anderson and Fabien A.P. Petitcolas. On the limits of steganography.
IEEE Journal of Selected Areas in Communications, 16(4):474–481, May 1998.

[3] David Aucsmit, editor. Information Hiding: Proceedings of the Second Interna-
tional Workshop, Portland, Oregon, U.S.A., April 14-17, 1998. Springer.

[4] Daniel J. Barrett and Richard Silverman. SSH, The Secure Shell: The Definitive
Guide. O’Reilly, 2001.

[5] Christian Cachin. An information-theoretic model for steganography. In David
Aucsmith, editor, Information Hiding: Proceedings of the Second Interna-
tional Workshop, pages 306–318, Portland, Oregon, U.S.A., April 14-17, 1998.
Springer.

[6] Steve J. Chapin and Shawn Ostermann. Information hiding through semantics-
preserving application-layer protocol steganography. Technical report, Center for
Systems Assurance, Syracuse University, October 2002. [Internal Document].

[7] Tom Dunigan. Internet steganography. Technical report, Oak Ridge National
Laboratory (Contract No. DE-AC05-96OR22464), Oak Ridge, Tennessee, Octo-
ber 1998. [ORNL/TM-limited distribution].

[8] J. Mark Ettinger. Steganalysis and game equilibria. In David Aucsmith, editor,
Information Hiding: Proceedings of the Second International Workshop, pages
319–328, Portland, Oregon, U.S.A., April 14-17, 1998. Springer.

[9] Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and
David Karger. Infranet: Circumventing web censorship and surveillance. In
Proceedings of the 11th USENIX Security Symposium, pages 247–262, San Fran-
cisco, California, U.S.A., August 05-19, 2002. The USENIX Association.

[10] Gina Fisk, Mike Fisk, Christos Papadopoulos, and Joshua Neil. Eliminating
steganography in Internet traffic with active wardens. In Job Oostveen, editor,
Information Hiding: Preproceedings of the Fifth International Workshop, pages
29–46, Noordwijkerhout, The Netherlands, October 7-9, 2002. Springer.

[11] Theodore Handel and Maxwell Sandford. Hiding data in the OSI network model.
In Ross Anderson, editor, Information Hiding: Proceedings of the First Inter-
national Workshop, pages 23–38, Cambridge, U.K., May 30-June 01, 1996.
Springer.

[12] Ka0ticSH. Diggin em walls (part 3) - advanced/other techniques for bypassing
firewalls. New Order, April 11, 2002. Retrieved on August 28, 2002 from the
World Wide Web: http://neworder.box.sk/newsread.php?newsid=3957.

27

[13] Stefan Katzenbeisser and Fabien A.P. Petitcolas. Information Hiding: Techniques
for Steganography and Digital Watermarking. Artech House, Norwood, MA,
2000.

[14] Stefan Katzenbeisser and Fabien A.P. Petitcolas. Defining security in stegano-
graphic systems. In Electronic Imaging, Photonics West, SPIE, volume 4675 of
Security and Watermarking of Multimedia Contents IV, pages 50–56, 2002.

[15] Thomas Mittelholzer. An information-theoretic approach to steganography and
watermarking. In Andreas Pfitzmann, editor, Information Hiding: Proceedings
of the Third International Workshop, pages 1–16, Dresden, Germany, September
29-October 01, 1999. Springer.

[16] Ira S. Moskowitz, editor. Information Hiding: Proceedings of the Fourth Inter-
national Workshop, Pittsburg, PA, U.S.A., April 25-27, 2001. Springer.

[17] Ira S. Moskowitz, Garth E. Longdon, and LiWuChang. A new paradigm hidden
in steganography. In Proceedings of the New Security Paradigm Workshop 2000,
pages 41–50, Cork, Ireland, September 19-21, 2000. n.

[18] Job Oostveen, editor. Information Hiding: Preproceedings of the Fifth Interna-
tional Workshop, Noordwijkerhout, The Netherlands, October 7-9, 2002.

[19] Andreas Pfitzmann, editor. Information Hiding: Proceedings of the Third Interna-
tional Workshop, Dresden, Germany, September 29-October 01, 1999. Springer.

[20] Brigit Pfitzmann. Information hiding terminology. In Ross Anderson, editor,
Information Hiding: Proceedings of the First International Workshop, pages 347–
349, Cambridge, U.K., May 30-June 01, 1996. Springer.

[21] Niels Provos. Defending against statistical steganalysis. In Proceedings of the
10th USENIX Security Symposium, pages 323–335, Washington, DC, U.S.A., Au-
gust 13-17, 2001. The USENIX Association.

[22] route@infonexus.com and alhambra@infornexus.com. Article 6. Phrack Maga-
zine, 49, August 1996. Retrieved on August 27, 2002 from the World Wide Web:
http://www.phrack.com/phrack/49/P49-06.

[23] Craig H. Rowland. Covert channels in the TCP/IP protocol suite. Psionics Tech-
nologies, November 14, 1996. Retrieved on August 23, 2002 from the World
Wide Web: http://www.psionic.com/papers/whitep03.html.

[24] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In
Proceedings of CRYPTO ’83, pages 51–67. Plenum Press, 1984.

[25] Bill Watterson. Something Under the Bed is Drooling. Andrews and McMeel,
pp. 101–104, Kansas City, MO, 1988.

[26] Peter Wayner. Mimic functions. Cryptologia, XVI(3):193–214, July 1992.

28

[27] Peter Wayner. Disappearing Cryptography - Information Hiding: Steganogra-
phy and Watermarking. Morgan Kaufmann Publishers, San Francisco, CA, 2nd
edition, 2002.

[28] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH authenti-
cation protocol. Working Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from the World Wide Web:
http://www.ietf.org/internet-drafts/draft-ietf-secsh-userauth-16.txt.

[29] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH connec-
tion protocol. Working Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from the World Wide Web:
http://www.ietf.org/internet-drafts/draft-ietf-secsh-connect-16.txt.

[30] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH proto-
col architecture. Working Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from the World Wide Web:
http://www.ietf.org/internet-drafts/draft-ietf-secsh-architecture-13.txt.

[31] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH transport
layer protocol. Working Group Internet-Draft, September 20, 2002. Expires:
March 21, 2002. Retrieved on October 26, 2002 from the World Wide Web:
http://www.ietf.org/internet-drafts/draft-ietf-secsh-transport-15.txt.

[32] J. Zöllner, H. Federrath, H. Klimant, A. Pfitzmann, R. Piotraschke, A. Westfeld,
G. Wicke, and G. Wolf. Modeling the security of steganographic systems. In
David Aucsmith, editor, Information Hiding: Proceedings of the Second Interna-
tional Workshop, pages 344–354, Portland, Oregon, U.S.A., April 14-17, 1998.
Springer.

29

